Can we stop Bulevirtide? Lessons learned from hepatitis D viral kinetics modelling

Harel Dahari, PhD, FAASLD

Asselah et al recently reported undetectable HDV RNA during and after end of treatment (EOT) with:

(i) pegIFN alone

Off-label use of **pegIFN** therapy is **suboptimal** in achieving sustained HDV RNA negativity after therapy is completed (~25%).

Pegylated Interferon Alfa-2a

(N=24)

EOT, end of treatment

Asselah et al recently reported undetectable HDV RNA during and after end of treatment (EOT) with:

(i) pegIFN alone

(ii) BLV 10mg daily alone,

BLV monotherapy is suboptimal in achieving sustained HDV RNA negativity after therapy is completed (~12%)

Bulevritide, 10 mg (N= 50)

EOT, end of treatment

Asselah et al recently reported undetectable HDV RNA during and after end of treatment (EOT) with:

- (i) pegIFN alone
- (ii) BLV 10mg daily alone,
- (iii) pegIFN + 2mg BLV daily,

pegIFN + 2mg BLV daily appears to reach a higher rate of HDV negativity by EOT compared to **pegIFN alone** (44% vs 21%) but eventually achieved similar HDV negativity rates after therapy is completed (~25%).

Bulevirtide, 2 mg+Pegylated Interferon Alfa-2a (N=50)

Asselah et al recently reported undetectable HDV RNA during and after end of treatment (EOT) with:

- (i) pegIFN alone
- (ii) BLV 10mg daily alone,
- (iii) pegIFN + 2mg BLV daily,
- (iv) pegIFN + 10mg BLV daily,

The 46% HDV negativity rate with **pegIFN + 10 mg of BLV** appears (but not statistically powered) to be higher than with **pegIFN alone** (25%).

The 70% of HDV negativity at EOT and the 46% HDV negativity rate with pegIFN + 10 mg of BLV suggests a welcome advance in HDV therapy

- Historically, on-treatment hepatitis C RNA levels served as an indicator of pegIFN-based treatment outcome (Ferenci et al. Gastroenterology 2008;135:451-8).
- Since data suggests that a finite BLV-based therapy is possible but suboptimal, it is important to investigate whether ontreatment HDV kinetics can predict response.

The role of mathematical modeling of viral kinetics during antiviral treatment

- To provide insights into drug mode(s) of action (MOA)
- To estimate drug efficacy
- To understand HDV-HBsAg-host interplay during infection and treatment
- To develop and optimize response-guided therapies

What do we know about pegIFN mode of action (MOA)?

Modeling suggests that pegIFN MOA against HDV is mainly to block HDV production $$$_{death/loss\,(\delta)}$$

Understanding Early Serum Hepatitis D Virus and Hepatitis B Surface Antigen Kinetics During Pegylated Interferon-alpha Therapy Via Mathematical Modeling

Jeremie Guedi,^{1,2,3} Yaron Rotman,⁴ Scott J. Cotler,⁵ Christopher Koh,⁴ Peter Schmid,⁶ Jeff Albrecht,⁶ Vanessa Haynes-Williams,⁴ T. Jake Liang,⁴ Jay H. Hoofnagle,⁴ Theo Heller,⁴ and Harel Dahari^{1,5}

HEPATOLOGY, Vol. 60, No. 6, 2014

After a couple of days, during which HDV remained at baseline levels, two kinetic patterns were identified in responders

- Target (HBsAg-infected) cells, T0, become HDV-infected cells, I, at rate β .
- Infected cells are then lost or die at rate δ .
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- pegIFN MOA in blocking HDV production is shown using solid red line (parameter ε)

Summary of modeling predictions during pegIFN therapy

Understanding Early Serum Hepatitis D Virus and Hepatitis B Surface Antigen Kinetics During Pegylated Interferon-alpha Therapy Via Mathematical Modeling

What do we know about Bulevirtide mode of action (MOA)?

Modeling predicts a monophasic viral decline under antiviral treatment that blocks virus infection

Loglio et al. measured frequent HDV kinetics in 3 patients who were treated with BLV monotherapy for up to 3 years

Journal of Hepatology Volume 76, Issue 2, February 2022, Pages 464-469

Safety and effectiveness of up to 3 years' bulevirtide monotherapy in patients with HDV-related cirrhosis

Alessandro Loglio¹, Peter Ferenci², Sara Colonia Uceda Renteria³, Christine Y.L. Tham⁴, Caroline Scholtes⁵, Heidemarie Holzmann⁶, Florian van Bömmel⁷, Marta Borghi¹, Riccardo Perbellini¹, Alessandro Rimondi⁸, Elisa Farina⁸, Elena Trombetta⁹, Maria Manunta¹⁰, Laura Porretti⁹, Daniele Prati¹⁰, Ferruccio Ceriotti³, Fabien Zoulim⁵, Antonio Bertoletti⁴, Pietro Lampertico¹⁸ Q 🖂

The model (solid curve) fits well with measured HDV viral decline (symbols) in 2 patients (Pt 2 and Pt 3) under monotherapy BLV

- Target (HBsAg-infected) cells, T0, become HDVinfected cells, I, at rate β.
- Infected cells are then lost or die at rate δ.
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- BLV known MOA in blocking entry/infection is shown using solid green line (parameter η)

Modeling predicts a monophasic viral decline under antiviral treatment that blocks virus infection

Since it is **not** possible **to simultaneously estimate with confidence** both BLV efficacy (η) and infected cell death/loss rate (δ), **BLV efficacy in blocking infection was assumed** η ~100%.

Mhlanga A et al. JHEP Reports 2024 in press.

- Target (HBsAg-infected) cells, T0, become HDVinfected cells, I, at rate β.
- Infected cells are then lost or die at rate δ.
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- BLV known MOA in blocking entry/infection is shown using solid green line (parameter η)

The model <u>did not</u> fit well one patient (Pt 1), in whom a transient viral increase was seen followed by a monophasic HDV decline

LOYOLA

Stritch School of Medicine

- Target (HBsAg-infected) cells, T0, become HDVinfected cells, I, at rate β.
- Infected cells are then lost or die at rate δ.
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- BLV known MOA in blocking entry/infection is shown using solid green line (parameter η)

Theoretically, the transient viral increase can be explained if one assumes that in addition to blocking viral infection

- → BLV enhances viral production (parameter κ_p) → [this is unlikely for BLV] or
- \succ BLV reduces viral clearance from circulation (parameter θ)

Reducing viral clearance by BLV may be a more plausible MOA if viral clearance from the circulation is interrupted by BLV blocking viral entry into hepatocytes.

Shekhtman et al. J Hepatol 2022, 76(5):1229-1231

- Target (HBsAg-infected) cells, T0, become HDVinfected cells, I, at rate β.
- Infected cells are then lost or die at rate δ .
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- BLV known MOA in blocking entry/infection is shown using solid green line (parameter η)
- Theoretical BLV MOA are shown using dashed green lines

Mathematical modeling suggests that entry-inhibitor Bulevirtide may interfere with HDV clearance from circulation

The basic model predicts that in addition to BLV blocking infection η ~100%, HDV clearance from blood may decrease

We recently showed for hepatitis C virus (HCV) that, in some patients, the liver not only produces virus but also clears virus from the circulation, **supporting the notion** that blocking viral entry could reduce viral clearance by the liver in patient 1. Modeling hepatitis C virus kinetics during liver transplantation reveals the role of the liver in virus clearance

Louis Shekhtman, Miquel Navasa, Natasha Sansone, Gonzalo Crespo, Gitanjali Subramanya, Tje Lin Chung, E Fabian Cardozo-Ojeda, Sofía Pérez-del-Pulgar, Alan S Perelson, Scott J Cotler, Xavier Forns, Susan L Uprichard [©], Harel Dahari [©] « see less

Bulevirtide monotherapy treatment: Undefined length of therapy

Can we use mathematical modeling to predict the duration of therapy to achieve cure?

Real-time response-guided therapy with DAA shortens treatment duration in ~40% of HCV treated patients

A value of $7x10^{-5}$ (IU/ml) can be used as the threshold for viral clearance (cure) as the concentration of one virion/13,500 ml = $7x10^{-5}$ IU/ml.

Response guided therapy for reducing duration of direct acting antivirals in chronic hepatitis C infected patients: a Pilot study

<u>Ohad Etzion</u> ^{ID}, <u>Harel Dahari</u> ^{ID}, <u>David Yardeni</u>, <u>Assaf Issachar</u>, <u>Anat Nevo-Shor</u>, <u>Michal Cohen-Naftaly</u>, <u>Yaffa Ashur</u>, <u>Susan L. Uprichard</u>, <u>Orly Sneh Arbib</u>, <u>Daniela Munteanu</u>, <u>Marius Braun</u>, <u>Scott J. Cotler</u>, <u>Naim</u> <u>Abufreha</u>, <u>Ayelet Keren-Naus</u>, <u>Yonat Shemer-Avni</u>, <u>Orna Mor</u>, <u>Jayanah Murad</u>, <u>Victor Novack & Amir</u> <u>Shlomai</u>

<u>Scientific Reports</u> **10**, Article number: 17820 (2020) <u>Cite this article</u>

Ohad Etzion Director, Department of Gastroenterology and Liver Diseases

Tel Aviv University.

The first clinical trial, in the field of viral dynamics, using <u>on treatment (real time)</u> modeling-based response guided therapy

Potential clinical use of modeling-based response guided (RGT) therapy during BLV treatment

Modeling predictions of BLV (2mg/day) treatment duration to reach the cure boundary of <1 HDV copy in the total extracellular body fluid (BL). Mathematical modeling suggests that entry-inhibitor bulevirtide may interfere with hepatitis D virus clearance from circulation

Louis Shekhtman • Scott J. Cotler • Alexander Ploss • Harel Dahari 🔗 🖂

modeling may explain, retrospectively, why patient 1 had viral rebound after 52 weeks of BLV

Patient 2 was recently reported (J Hepatol. 2023;78(4):876–80) to reach "cure" 72 weeks after completion of 3 years of BLV \rightarrow in agreement (retrospectively) with the modelling predictions

Not all patients had a monophasic HDV decline under BLV alone therapy

Shekhtman et al. JHEP Reports 2023 Nov 15;6(2):100966

Representative kinetic patterns during 48-week treatment with BLV (2mg/day) in patients with compensated cirrhosis and clinically significant portal hypertension

The *basic* model cannot explain a non-monophasic viral decline under antiviral treatment that blocks virus infection

To illustrated that, we fit the *basic* model with a representative non-monophasic HDV decline case from our real-life cohort (Wasserman et al. DeltaCure 2024 meeting, poster # P30).

Assuming BLV efficacy of $\eta=10\%$, 90% and 99% in blocking infection, modeling fits yielded overlapping model curves with estimates of infected cell loss rates that differed by more than an order of magnitude, ie., δ = 0.185, 0.0157, 0.0148 day⁻¹, respectively.

- Target (HBsAg-infected) cells, T0, become HDVinfected cells, I, at rate β.
- Infected cells are then lost or die at rate δ.
- Infected cells also produce virions, V, at rate p.
- Virions in circulation are cleared at rate c.
- BLV known MOA in blocking entry/infection is shown using solid green line (parameter η)

Mhlanga A et al. JHEP Reports 2024, in press.

Nevertheless, the usefulness of the *basic* model in understanding HDV kinetics during anti-HDV treatment is reviewed in:

Shekhtman/Duehren et al. Hepatitis D Virus and HBsAg Dynamics in the era of new Antiviral Treatments. Curr Gastroenterol Rep 25, 401–412 (2023).

Modelling HDV kinetics under the entry inhibitor bulevirtide suggests the existence of two HDV-infected cell populations

Liver:

(T), HDV-free HBsAg-infected positive HDV-naïve target cells (I_1 and I_2), two types of short and long lifespan HDV-infected cells, respectively

Blood: (V), HDV (A), ALT (H), HBsAg

Antivirals:

BLV blocks infection with efficacy η and may reduce viral clearance with efficacy by θ .

Blocking HDV production by interferon- α , interferon- λ (IFN), lonafarnib (LNF) or nucleic acid polymer (NAP) with efficacy by ϵ .

of Medicine

The *two-population* model fits well HDV RNA, HBsAg and ALT kinetics during 48 weeks of Bulevirtide (2mg/day) alone treatment

Shekhtman et al. JHEP Reports 2023 Nov 15;6(2):100966

Explaining the difference between biphasic and flat partial response under 48 weeks of Bulevirtide (2mg/day) treatment

Characterization of HDV kinetics during Bulevirtide-based therapy is needed for the development of mathematical models and RGT strategies

Kinetic data from 183 treated patients (114 BLV; 69 BLV+pegIFN) who participated in two French multicenter cohort studies suggest various HDV kinetic patterns, **yet to be characterized and modeled,** during treatment .

El Messaoudi et al. JHEP Reports 2024;6:101070.

Mhlanga et al. JHEP Reports 2024 in press.

Bulevirtide (2mg/day) monotherapy in patients with compensated cirrhosis and CSPH: a 96-week interim kinetic analysis (Poster # P30)

• We aim to extend our **48-week** study (JHEP Reports 2023 Nov 15;6(2):100966) in patients (N=38) with compensated cirrhosis and clinically significant portal hypertension (CSPH) during **up to 96 weeks** of treatment.

Interim analysis finds that

- 5 (13%) patients were non-responders (<1.6 log IU/ml decline from baseline throughout treatment not shown)</p>
- All responders (n=33) experienced an initial rapid viral decline (0.19 ± 0.12 log/wk)
- Responders had one of these five patterns:
 - i. Flat partial response (FPR) (n=20, Fig.1a),
 - ii. FPR + breakthrough (FPR + B) (n=3, Fig.1b),
 - iii. Biphasic (BP) (n=2, Fig.1d)
 - iv. BP + B (n=4, Fig.1e)
 - v. Triphasic decline (TP) (n=4, Fig.1c & f).
- O ALT normalization was achieved in 28 (76%) patients at 7.9 \pm 6.5 weeks (**Fig.1**).
- O HBsAg remained roughly at pre-treatment levels (**Fig.1**).

In Conclusion

Ongoing efforts in analyzing and modeling HDV kinetics during Bulevirtide-based therapy are likely to develop and optimize responseguided therapy (RGT) strategies for hepatitis D.

> The emerging question may be not if we can stop bulevirtide but when.

Acknowledgments: Partners

NIH Funding:

R01Al078881 R01GM121600 R01Al158666 R01Al144112 R01Al146917

Canadian Institutes of Health Research under AFF funding reference #178382

